as to maintain constant pH. The mixture was kept for 24 h at 0 °C, and the pH value was maintained by the dropwise addition of a 20% aqueous solution of NaOH; then an additional 5 mL of 20% NaOH was added, and the mixture was kept for an additional 72 h at 20 °C in order to decompose the remaining chloramines. The yield of diaziridine was determined by iodometric titration of the mixture taking into account the results of blank entries.

To isolate 1,2-dimethyl- (5a), 1,2,3-trimethyl- (5d), 1,2-diethyl-3-methyldiaziridines (5e), 1,5-diazabicyclo[3.1.0]hexane (5f), and 6-methyl-1,5-diazabicyclo[3.1.0]hexane (5g), the reaction mixture was saturated with NaOH at 20—30 °C, and the upper layer was separated, dried with NaOH, and distilled three times.

To isolate 1.2-di(β -acetaminoethyl)diaziridine (5b) and 3-methyl-1.2-di(β -acetaminoethyl)diaziridine (5c), the reaction mixture was acidified at 0-5 °C with 50% $\rm H_2SO_4$ to pH 7.0, half of the water was evaporated on a rotary evaporator, and the residue was diluted with a fivefold volume of MeOH. The mixture was kept for 30 min at 0 °C, the precipitate was dissolved in CHCl₃ and dried with $\rm K_2CO_3$. Diaziridines were isolated on a column with silica gel L 40/100; elution was carried out with CHCl₃ washed twice with an equal volume of 25% aqueous NH₃.

Blank entries with RNHCl. An aqueous solution of NaOCl (0.05 mol) was added dropwise at 0 °C to a solution of an amine (0.1 mol) in 30 mL of $\rm H_2O$. The mixture was kept for 24 h at 0 °C and for 72 h at ~20 °C. The content of RNHCl was determined by iodometric titration (as a rule, it was 0-3% of the initial amount).

The authors are grateful to K. I. Rezchikova, a senior research worker of the N. D. Zelinsky Institute of Organic Chemistry of the RAS, for her assistance in performing the quantum-chemical part of this study.

This work was carried out with financial support from INTAS (Grant 94-03-08730) and from the Russian Foundation for Basic Research (Project No. 97-03-33021a).

References

- V. V. Kuznetsov, N. N. Makhova, Yu. A. Strelenko, and L. I. Khmel'nitskii, Izv. Akad. Nauk SSSR, Ser. Khim., 1991, 2861 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 2496 (Engl. Transl.)].
- R. Ohme, E. Schmitz, und P. Dolge, Chem. Ber., 1966, 99, 2104.
- E. Bergman, D. Herman, und E. Zimkin, J. Org. Chem., 1948, 13, 353.
- B. Carboni, F. Tonnard, and R. Carrie, Bull. Soc. Chim. Fr., 1987, 3, 525.
- M. Komatsu, N. Nishikaze, M. Sakamoto, Y. Ohshiro, and T. Agawa, J. Org. Chem., 1974, 39, 3198.
- BASF AG, Pat. BRD, No 3607993, 11.03.1986, C.A. 1987, 107, 236687h.
- G. V. Shustov, S. N. Denisenko, I. I. Chervin, N. L. Asfandiarov, and R. G. Kostyanovsky, *Tetrahedron*, 1985, 41, 5719.
- Clark, A Handbook of Computational Chemistry, J. Wiley and Sons, New York, 1985.

Received February 26, 1997

Synthesis and molecular structure of trans-2,6-dimethallyl-1,1-dimethyl-1,2,3,6-tetrahydropyridinium iodide

Yu. N. Bubnov, a* E. E. Demina, M. O. Dekaprilevich, and Yu. T. Struchkovbt

^aN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 117913 Moscow, Russian Federation. Fax: 007 (095) 135 5328

^bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. Fax: 007 (095) 135 5085

The structure of trans-2,6-dimethallyl-1,1-dimethyl-1,2,3,6-tetrahydropyridinium iodide was established by X-ray structural analysis. The corresponding base was synthesized by reductive diallylation of pyridine with trimethallylborane in the presence of 2-propanol.

Key words: allylboration, pyridine, trimethallylborane, *trans*-2,6-dimethallyl-1,2,3,6-tetra-hydropyridine, X-ray structural analysis.

Complexes of triallylborane with pyridine and its various derivatives are stable under an inert atmosphere

but undergo complete rearrangement under the action of alcohols, water, or R_2NH to form the corresponding trans-2,6-diallyl-1,2,3,6-tetrahydropyridines (in yields of 70–97%). ¹⁻³ This stereospecific reaction occurs with "destruction of aromaticity" and is not complicated by

[†] Deceased in 1995.

Table 1. Bond lengths (A) in molecule 2

Bond	d/À	Bond	d/Å	
N(1)-C(2)	1.532(6)	N(1)-C(6)	1.542(6)	
N(1)-C(12)	1.508(7)	N(1)-C(13)	1.501(8)	
C(1)-C(2)	1.537(8)	C(1)-C(10)	1.492(8)	
C(2)-C(3)	1.494(8)	C(3)-C(4)	1.318(9)	
C(4)-C(5)	1.489(9)	C(5)-C(6)	1.507(8)	
C(6)-C(7)	1.532(7)	C(7)-C(8)	1.509(8)	
C(8) - C(9)	1.317(8)	C(8)-C(15)	1.469(10)	
C(10)-C(11)	1.330(9)	C(10)-C(14)	1.497(10)	

side processes. The reaction is called reductive *trans*-2,6-diallylboration of pyridines with allylboranes. The structures of the piperideines formed were established by chemical and physicochemical methods, primarily by NMR spectroscopy. 2,3 The structures of *trans*-2,6-diallyl-3-bromo- Δ^3 -piperideine hydrochloride and *trans*-2-allyl-6-phenyl- Δ^3 -piperideine hydrochloride were established by X-ray structural analysis.

Recently, we have demonstrated that when treated with 2-propanol, the trimethallylborane—pyridine adduct (b.p. 75–77 °C (1 Torr), 11 B δ was $^{-0.5}$) gave trans-2,6-dimethallyl-1,2,3,6-tetrahydropyridine (1) in a yield of 87%.6

i. 1. PrⁱOH (4 equiv.), 20 °C, 2 h2. H₂O, OH⁻

The reaction proceeds at room temperature and is completed in 2 h,6 i.e., the reaction conditions are milder than those in the case of triallylborane.^{2,3} Hydrogenation of amine 1 yielded 2,6-diisobutylpiperidine, and a trans arrangement of its substituents was established by NMR spectroscopy (based on analysis of the spectrum of its N,N-dimethyl salt).⁶ However, we would

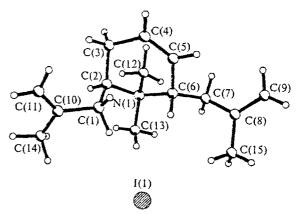


Fig. 1. Overall view of the molecule of *trans*-2,6-dimethallyl-1,1-dimethyl-1,2,3,6-tetrahydropyridinium iodide 2.

like to establish unambiguously the structure of 1, particularly the mutual arrangement of the methallyl groups with respect to the ring. For this purpose, we obtained a single crystal of N,N-dimethyl salt 2 from amine 1 and studied it by X-ray structural analysis.

The overall view of molecule 2 is shown in Fig. 1. The bond lengths and bond angles are given in Tables 1 and 2, respectively. The piperidine ring of the molecule has a half-chair conformation. The C(6) and N(1) atoms deviate from the mean plane (within ± 0.003 Å) by 0.419 and -0.374 Å, respectively. The methallyl groups at the C(6) and C(2) atom are in axial and pseudo-equatorial positions, respectively. The bond lengths in the piperideine ring are close to those found previously in trans-2,6-diallyl-3-bromo- Δ^3 -piperideine hydrochloride⁴ and trans-2-allyl-6-phenyl- Δ^3 -piperideine hydrochloride.⁵ In the molecule, short intramolecular contacts occur between the iodide anion and the H(6) and H(122) atoms (I(1)-H(6) and I(1)-H(122) are 3.26(4) and 3.18(4) Å, respectively).

From the above-mentioned data it follows that the reaction of pyridine with trimethallylborane in the presence of alcohols occurs as stereospecific *trans*-addition of methallyl groups at positions 2 and 6 of the heterocycle.

Experimental

trans-2,6-Dimethallyl-1,2,3,6-tetrahydropyridine (1) was synthesized by the reaction of trimethallylborane (7.17 g,

Table 2. Bond angles (ω) in molecule 2

Angle ω/deg		Angle ω/deg		Angle ω/deg		Angle	ω/deg
C(2)-N(1)-C(6)	109.4(3)	C(4)-C(5)-C(6)	110.4(5)	C(2)-N(1)-C(12)	110.3(4)	C(3)—C(4)—C(5)	123.2(6)
C(6)-N(1)-C(12)	108.8(4)	N(1)-C(6)-C(7)	112.8(4)	C(2)-N(1)-C(13)	110.2(4)	N(1)-C(6)-C(5)	110.2(4)
C(6)-N(1)-C(13)	109.7(4)	C(6)-C(7)-C(8)	111.2(4)	C(12)-N(1)-C(13)	108.3(4)	C(5)-C(6)-C(7)	110.4(4)
C(2)-C(1)-C(10)	111.4(4)	C(7)-C(8)-C(15)	116.3(6)	N(1)-C(2)-C(1)	113.7(4)	C(7)-C(8)-C(9)	121.4(6)
N(1)-C(2)-C(3)	109.6(4)	C(1)-C(10)-C(11)	121.3(6)	C(1)-C(2)-C(3)	111.5(4)	C(9)-C(8)-C(15)	122.3(6)
C(2)-C(3)-C(4)	125.5(6)	C(11)-C(10)-C(14)	122.2(7)			C(1)-C(10)-C(14)	116.4(5)

,	, ,								
Atom	x	у	ζ	$U_{\rm eq}/{\rm \AA}^2$	Atom	χ.	у	z	$U_{ m eq}/{ m \AA}^2$
I(1)	2153(1)	9083(1)	1525(1)	68(1)	H(51)	499(5)	549(5)	283(3)	6(2)
N(1)	2190(3)	5135(4)	3110(3)	45(1)	H(52)	408(5)	527(6)	200(4)	7(2)
C(1)	1225(5)	2811(7)	3426(4)	54(2)	H(6)	320(3)	670(4)	294(3)	2(1)
C(2)	2317(4)	3730(5)	3585(3)	45(2)	H(71)	319(5)	617(5)	456(4)	7(2)
C(3)	3385(5)	3015(6)	3309(4)	58(2)	H(72)	434(5)	533(6)	438(4)	6(2)
C(4)	4237(5)	3604(6)	2905(4)	61(2)	H(91)	621(5)	654(7)	423(4)	7(2)
C(5)	4244(5)	5095(6)	2664(4)	55(2)	H(92)	612(5)	812(6)	442(4)	6(2)
C(6)	3385(4)	5876(6)	3186(3)	45(2)	H(111)	160(5)	19(6)	355(4)	8(2)
C(7)	3884(5)	6090(6)	4177(3)	51(2)	H(112)	120(6)	-15(9)	458(5)	11(3)
C(8)	4602(4)	7396(5)	4278(3)	51(2)	H(121)	97(5)	462(6)	206(4)	6(2)
C(9)	5754(6)	7362(9)	4334(4)	65(2)	H(122)	180(6)	587(7)	184(5)	8(2)
C(10)	1125(4)	1844(6)	4204(4)	53(2)	H(123)	242(7)	436(8)	180(6)	13(3)
C(11)	1278(6)	492(8)	4110(7)	80(3)	H(131)	54(5)	554(5)	343(3)	6(2)
C(12)	1782(6)	4951(8)	2115(4)	65(2)	H(132)	135(4)	679(6)	325(4)	6(2)
C(13)	1305(5)	6002(8)	3540(5)	63(2)	H(133)	156(6)	593(6)	424(5)	8(2)
C(14)	777(7)	2466(9)	5070(5)	74(3)	H(141)	6(6)	290(6)	493(4)	8(2)
C(15)	3943(9)	8695(9)	4289(7)	93(3)	H(142)	127(7)	319(9)	534(5)	12(3)
H(11)	61(4)	328(5)	336(3)	4(1)	H(143)	67(7)	186(9)	550(6)	12(3)
H(12)	131(4)	229(6)	285(4)	6(2)	H(151)	351(5)	875(6)	482(4)	6(2)
H(2)	240(3)	395(4)	426(3)	3(1)	H(152)	450(7)	954(9)	433(5)	12(3)
H(3)	336(5)	209(6)	348(4)	7(2)	H(153)	327(9)	889(8)	388(7)	13(3)
H(4)	490(5)	313(6)	277(4)	7(2)					

Table 3. Atomic coordinates ($\times 10^4$; for H, $\times 10^3$) and equivalent isotropic temperature factors U_{eq} ($\times 10^3/\text{Å}^2$; for H, $\times 10^2/\text{Å}^2$) for molecule 2

40.74 mmol), pyridine (6.6 mL, 81.48 mmol), and 2-propanol (12.4 mL, 161.88 mmol) under an atmosphere of argon. The yield was 6.74 g (87%), b.p. 62-63 °C (1 Torr), $n_D^{22} = 1.4880.6$

trans-2,6-Dimethallyl-1,1-dimethyl-1,2,3,6-tetrahydropyridinium iodide (2)6. A mixture of amine 1 (0.94 g, 4.91 mmol), MeI (1.24 mL, 19.64 mmol), and K_2CO_3 (1.38 g, 9.82 mmol) in ethanol (10 mL) was refluxed for 5 h. The reaction mixture was filtered, and the low-boiling compounds were distilled in vacuo. The product was extracted with chloroform. The extract was evaporated to dryness, and the residue was crystallized from an ethyl acetate—ethanol mixture. Salt 2 was isolated in a yield of 1.28 g (75%), m.p. 164—165 °C.

Single crystals of salt 2 were obtained by crystallization from an ethyl acetate—ethanol mixture. The crystals are monoclinic, M=347.3 [C₁₅H₂₆N]I, space group $P2_1/C$, Z=4, at 23 °C: a=11.465(2) Å, b=9.691(4) Å, c=14.722(4) Å, $\beta=95.11(3)^{\circ}$, V=1629.2(6) Å³, $d_{\rm calc}=1.416$ g cm⁻³. The unit cell parameters and intensities of 2084 independent reflections with $I \geq 2\sigma(I)$ were measured on an Enraf-Nonius Cad-4 diffractometer (λ -Mo-K α radiation, graphite monochromator, $\theta/2\theta$ scanning technique, $2\theta \leq 54^{\circ}$). The structure of salt 2 was solved by the direct method and refined by the full-matrix least-squares method with anisotropic thermal parameters for nonhydrogen atoms. All hydrogen atoms were revealed from the difference Fourier synthesis and refined isotropically. The final values of the R factors were as follows: R=0.038 and $R_w=0.042$. All calculations were carried out on an IBM-PC/AT computer using the SHELXTL PLUS

program package. The atomic coordinates and thermal parameters of the structure of 2 are given in Table 3.

References

- Yu. N. Bubnov, E. A. Shagova, S. V. Evchenko, A. V. Ignatenko, and I. D. Gridnev, Izv. Akad. Nauk SSSR, Ser. Khim., 1991, 2644 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 2315 (Engl. Transl.)].
- Yu. N. Bubnov, E. A. Shagova, S. V. Evchenko, and A. V. Ignatenko, *Izv. Akad. Nauk, Ser. Khim.*, 1994, 693 [Russ. Chem. Bull., 1994, 43, 645 (Engl. Transl.)].
- 3. Yu. N. Bubnov, Izv. Akad. Nauk, Ser. Khim., 1995, 1203 [Russ. Chem. Bull., 1995, 44, 1156 (Engl. Transl.)].
- 4. Yu. N. Bubnov, E. A. Shagova, S. V. Evchenko, M. O. Dekaprilevich, and Yu. T. Struchkov, Izv. Akad. Nauk, Ser. Khim., 1994, 705 [Russ. Chem. Bull., 1994, 43, 657 (Engl. Transl.)].
- Yu. N. Bubnov, E. V. Klimkina, M. O. Dekaprilevich, and Yu. T. Struchkov, *Izv. Akad. Nauk, Ser. Khim.*, 1996, 2736 [Russ. Chem. Bull., 1996, 45, 2736 (Engl. Transl.)].
- Yu. N. Bubnov, E. E. Demina, and A. V. Ignatenko, Izv. Akad. Nauk, Ser. Khim., 1997, 1361 [Russ. Chem. Bull., 1997, 1306 (Engl. Transl.)].
- W. Robinson and G. M. Sheldrick, SHELX, in: Crystallographic computing techniques and new technologies, Eds. N. W. Isaacs, M. R. Taylor, Oxford, England, Oxford Univ. Press, 1988, 366 pp.

Received March 3, 1997